# ch.9 problem.P3(new)

## 315 days ago by g1.kjiwon

t=vector([2*I,0,I]) u=vector([I,I,I]) v=vector([I,-1*I,I]) A = matrix(CDF, 3, 3, [t, u, v]) # t, u, v를 행벡터로 하는 행렬 생성 print "A=" print A
 A= [ 2.0*I 0.0 1.0*I] [ 1.0*I 1.0*I 1.0*I] [ 1.0*I -1.0*I 1.0*I] A= [ 2.0*I 0.0 1.0*I] [ 1.0*I 1.0*I 1.0*I] [ 1.0*I -1.0*I 1.0*I]
[G, mu]=A.gram_schmidt() # 직교화과정 : 행에 대하여 직교기저를 찾는다. A=mu*G print "G=" print G
 G= [ -0.894427191*I 0.0 -0.4472135955*I] [ 1.38777878078e-17 + 0.182574185835*I -0.912870929175*I -2.08166817117e-17 - 0.36514837167*I] [-2.77555756156e-17 - 0.408248290464*I -0.408248290464*I 4.16333634234e-17 + 0.816496580928*I] G= [ -0.894427191*I 0.0 -0.4472135955*I] [ 1.38777878078e-17 + 0.182574185835*I -0.912870929175*I -2.08166817117e-17 - 0.36514837167*I] [-2.77555756156e-17 - 0.408248290464*I -0.408248290464*I 4.16333634234e-17 + 0.816496580928*I]
zz1 = G.row(0) / G.row(0).norm() zz2 = G.row(1) / G.row(1).norm() zz3 = G.row(2) / G.row(2).norm() N=matrix(CDF,3,3,[zz1,zz2,zz3]) print "N=" print N
 N= [ -0.894427191*I 0.0 -0.4472135955*I] [ 1.38777878078e-17 + 0.182574185835*I -0.912870929175*I -2.08166817117e-17 - 0.36514837167*I] [-2.77555756156e-17 - 0.408248290464*I -0.408248290464*I 4.16333634234e-17 + 0.816496580928*I] N= [ -0.894427191*I 0.0 -0.4472135955*I] [ 1.38777878078e-17 + 0.182574185835*I -0.912870929175*I -2.08166817117e-17 - 0.36514837167*I] [-2.77555756156e-17 - 0.408248290464*I -0.408248290464*I 4.16333634234e-17 + 0.816496580928*I]